Orthopedic Surgery
Orthopedic surgery or orthopedics (also spelled orthopaedic surgery and orthopaedics in British English) is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal trauma, sports injuries, degenerative diseases, infections,tumors, and congenital disorders.
Nicholas Andry coined the word “orthopaedics”, derived from Greek words for orthos (“correct”, “straight”) andpaideion (“child”), when he published Orthopaedia: or the Art of Correcting and Preventing Deformities in Childrenin 1741. Correction of spinal and bony deformities became the cornerstone of orthopedic practice. Today, over 6 months of training is dedicated to the treatment of the pediatric population. In the United States orthopedics is standard, although the majority of college, university and residency programs, and even the American Academy of Orthopaedic Surgeons, still use the spelling with the Latinate digraph ae. Elsewhere, usage is not uniform; in Canada, both spellings are acceptable; orthopaedics usually prevails in the rest of the Commonwealth, especially in Britain. Training In the United States, orthopedic surgeons have typically completed four years of undergraduate education and four years of medical school. Subsequently, these medical school graduates undergo residency training in orthopedic surgery. The five-year residency consists of one year of general surgery training followed by four years of training in orthopedic surgery. Selection for residency training in orthopedic surgery is very competitive. Approximately 700 physicians complete orthopedic residency training per year in the United States. About 10 percent of current orthopedic surgery residents are women; about 20 percent are members of minority groups. There are approximately 20,400 actively practicing orthopedic surgeons and residents in the United States. According to the latest Occupational Outlook Handbook (2009–2010) published by the United States Department of Labor, between 3–4% of all practicing physicians are orthopedic surgeons. Many orthopedic surgeons elect to do further training, or fellowships, after completing their residency training. Fellowship training in an orthopedic subspecialty is typically one year in duration (sometimes two) and sometimes has a research component involved with the clinical and operative training. Examples of orthopedic subspecialty training in the United States are:
After completion of specialty residency/registrar training, an orthopedic surgeon is then eligible for board certification. Certification by the American Board of Orthopaedic Surgery means that the orthopedic surgeon has met the specified educational, evaluation, and examination requirements of the Board. The process requires successful completion of a standardized written exam followed by an oral exam focused on the surgeon’s clinical and surgical performance over a 6-month period. In Canada, the certifying organization is the Royal College of Physicians and Surgeons of Canada; in Australia and New Zealand it is the Royal Australasian College of Surgeons. In the United States, specialists in hand surgery and sports medicine may obtain a Certificate of Added Qualifications (CAQ) in addition to their board certification by successfully completing a separate standardized examination. There is no additional certification process for the other subspecialties. Practice According to applications for board certification from 1999 to 2003, the top 25 most common procedures (in order) performed by orthopedic surgeons are as follows.
The use of arthroscopic techniques has been particularly important for injured patients. Arthroscopy was pioneered in the early 1950s by Dr. Masaki Watanabe of Japan to perform minimally invasive cartilage surgery and reconstructions of torn ligaments. Arthroscopy helped patients recover from the surgery in a matter of days, rather than the weeks to months required by conventional, ‘open’ surgery. Knee arthroscopy is one of the most common operations performed by orthopedic surgeons today and is often combined with meniscectomy or chondroplasty. The majority of orthopedic procedures are now performed arthroscopically. Arthroplasty The modern total hip replacement was pioneered by Sir John Charnley in England in the 1960s. He found that joint surfaces could be replaced by metal or high density polyethylene implants cemented to the bone with methyl methacrylate bone cement. Since Charnley, there have been continuous improvements in the design and technique ofjoint replacement (arthroplasty) with many contributors, including W. H. Harris, the son of R. I. Harris, whose team at Harvard pioneered uncemented arthroplasty techniques with the bone bonding directly to the implant. Knee replacements using similar technology were started by McIntosh in rheumatoid arthritis patients and later by Gunston and Marmor for osteoarthritis in the 1970s developed by Dr John Insall in New York utilizing a fixed bearing system, and by Dr Frederick Buechel and Dr Michael Pappas utilizing a mobile bearing system. Uni-compartmental knee replacement, in which only one weight-bearing surface of an arthritic knee is replaced, is an alternative to a total knee replacement in a select patient population. Joint replacements are available for other joints on a limited basis, most notably shoulder, elbow, wrist, ankle, spine, and fingers. In recent years, surface replacement of joints, in particular the hip joint, have become more popular amongst younger and more active patients. This type of operation delays the need for the more traditional and less bone-conserving total hip replacement, but carries significant risks of early failure from fracture and bone death. One of the main problems with joint replacements is wear of the bearing surfaces of components. This can lead to damage to surrounding bone and contribute to eventual failure of the implant. Use of alternative bearing surfaces has increased in recent years, particularly in younger patients, in an attempt to improve the wear characteristics of joint replacement components. These include ceramics and all-metal implants (as opposed to the original metal-on-plastic). The plastic (actually ultra high-molecular-weight polyethylene) can also be altered in ways that may improve wear characteristics. |